Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Nat Prod ; 87(2): 238-251, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38354306

RESUMO

Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 µM, respectively.


Assuntos
Antineoplásicos , Cromonas , Penicillium chrysogenum , Penicillium , Xantonas , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Topoisomerase , Xantonas/farmacologia , Xantonas/química , Penicillium/química
2.
J Inflamm (Lond) ; 20(1): 28, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605161

RESUMO

BACKGROUND: Ferroptosis in alveolar and bronchial epithelial cells is one of the main mechanisms underlying the development of chronic obstructive pulmonary disease (COPD). Sodium pyruvate (NaPyr) is a natural antioxidant in the body, exhibiting anti-inflammatory and antioxidant activities. NaPyr has been used in a Phase II clinical trial as a novel therapy for COPD; however, the mechanism underlying NaPyr-mediated therapeutic benefits in COPD is not well understood. OBJECTIVE: We aimed to assess the protective effects of NaPyr and elucidate its potential mechanism in cigarette smoke extract (CSE)-induced ferroptosis.To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, we expose a human bronchial epithelial cells to CSE. METHODS: To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, the A549 (human lung carcinoma epithelial cells) and BEAS-2B (bronchial epithelial cells) cell lines were cultured, followed by treatment with CSE. To measure cellular viability and iron levels, we determined the levels of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), mitochondrial superoxide (MitoSOX), membrane potential (MMP), and inflammatory factors (tumor necrosis factor [TNF] and interleukin [IL]-8), and examined CSE-induced pulmonary inflammation and ferroptosis. To clarify the molecular mechanisms of NaPyr in COPD therapy, we performed western blotting and real-time PCR (qPCR) to determine the expression of glutathione peroxidase 4 (GPX4), nuclear factor E2-related factor 2 (Nrf2), and cyclooxygenase 2 (COX2). RESULTS: We found that NaPyr effectively mitigated CSE-induced apoptosis and improved apoptosis induced by erastin, a ferroptosis inducer. NaPyr significantly decreased iron and MDA levels and increased GSH levels in CSE-induced cells. Furthermore, NaPyr suppressed ferroptosis characteristics, such as decreased levels of ROS, MitoSOX, and MMP. NaPyr significantly increases the expression levels of GPX4 and Nrf2, indicating that activation of the GPX4/Nrf2 axis could inhibit ferroptosis in alveolar and bronchial epithelial cells. More importantly, NaPyr inhibited the secretion of downstream inflammatory factors, including TNF and IL-8, by decreasing COX2 expression levels to suppress CSE-induced inflammation. CONCLUSION: Accordingly, NaPyr could mitigate CSE-induced ferroptosis in alveolar and bronchial epithelial cells by activating the GPX4/Nrf2 axis and decreasing COX2 expression levels. In addition, NaPyr reduced the secretion of inflammatory factors (TNF and IL-8), affording a novel therapeutic candidate for COPD.

3.
Chin Med J (Engl) ; 136(13): 1583-1590, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027426

RESUMO

BACKGROUND: Lung cancer has been the leading cause of cancer-related deaths worldwide for many years. This study aimed to investigate the global patterns and trends of lung cancer. METHODS: Lung cancer incidence and mortality were derived from the GLOBOCAN 2020 database. Continuous data from Cancer Incidence in Five Continents Time Trends were used to analyze the temporal trends from 2000 to 2012 using Joinpoint regression, and average annual percent changes were calculated. The association between the Human Development Index and lung cancer incidence and mortality was assessed by linear regression. RESULTS: An estimated 2.2 million new lung cancer cases and 1.8 million lung cancer-related deaths occurred in 2020. The age-standardized incidence rate (ASIR) ranged from 36.8 per 100,000 in Demark to 5.9 per 100,000 in Mexico. The age-standardized mortality rate (ASMR) varied from 32.8 per 100,000 in Poland to 4.9 per 100,000 in Mexico. Both ASIR and ASMR were approximately twice higher in men than in women. The ASIR of lung cancer showed a downward trend in the United States of America (USA) between 2000 and 2012, and was more prominent in men. The age-specific incidence rates of lung cancer for ages of 50 to 59 years showed an upward trend in China for both men and women. CONCLUSIONS: The burden of lung cancer is still unsatisfactory, especially in developing countries like China. Considering the effectiveness of tobacco control and screening in developed countries, such as the USA, there is a need to strengthen health education, accelerate the establishment of tobacco control policies and regulations, and improve early cancer screening awareness to reduce the future burden of lung cancer.


Assuntos
Neoplasias Pulmonares , Masculino , Humanos , Feminino , Estados Unidos , Pessoa de Meia-Idade , Incidência , Neoplasias Pulmonares/epidemiologia , Modelos Lineares , China/epidemiologia
4.
Chemosphere ; 323: 138194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828106

RESUMO

Metal protection of offshore equipment is very complicated owing to the complex marine environment. Photocathodic protection (PCP) is one of the popular research topics in marine metal protection. The protection efficiency of photoanode depends largely on the photoelectric properties of semiconductor materials, viz. the process of charge separation, charge migration, and light absorption. In this article, the enhancement strategies, photoelectrochemical properties, and electron transfer mechanisms of different composites for PCP were reviewed and highlighted. Some photoanodes with unusual and striking properties were emphasized. In addition, the outlooks and challenges of the application of PCP and the design of photoanodes materials are proposed.


Assuntos
Semicondutores , Corrosão , Transporte de Elétrons
5.
J Colloid Interface Sci ; 627: 224-237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849856

RESUMO

The design of a photocatalytic system with Z-scheme heterojunction is the key to charge separation. In this paper, a simple synthesis method was used to prepare Bi12O15Cl6/InVO4 photocatalyst. The synthesized photocatalyst can effectively degrade pollutants, and inactivate bacteria under LED light irradiation. The optimal ratio of 30% Bi12O15Cl6/InVO4 material effectively degraded 78.85% of TC and 97.83% of RhB within 90 min and inactivated Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in 40 min. This improvement in photocatalytic performance is mainly due to the formation of a Z-scheme heterojunction between Bi12O15Cl6 and InVO4, which produces effective charge separation and improves photocatalytic degradation and antibacterial activity. The capture experiment revealed the main active substances. The effects of catalyst dosage and pollutant concentration were investigated in details. The intermediates of TC degradation were identified by mass spectrometry (MS), and the possible photocatalytic degradation pathway was proposed. Capture experiment and related measurements proposed the Z-scheme mechanism. This work emphasizes the importance of heterogeneous structure construction and proposes feasible solutions for the rational design of catalysts with photodegradation and antibacterial properties under LED light.


Assuntos
Bismuto , Poluentes Ambientais , Antibacterianos/química , Antibacterianos/farmacologia , Bismuto/química , Escherichia coli , Luz , Staphylococcus aureus
6.
Front Cardiovasc Med ; 9: 900406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833185

RESUMO

Background: The adverse effects of anticancer therapy in patients with malignancies and cardiovascular diseases are complicated. Oxaliplatin is one of the most commonly used chemotherapy drugs for gastric and colorectal cancers, and oxaliplatin-induced cardiotoxicity has rarely been reported. Case Summary: We report a 76-year-old man with adenocarcinoma of the esophagogastric junction and a 40-day history of non-ST-elevation myocardial infarction who exhibited a new third-degree atrioventricular block after oxaliplatin administration. We immediately withdrew oxaliplatin treatment and, to avoid future episodes, we implanted a permanent pacemaker for safety and added diltiazem hydrochloride. The third-degree atrioventricular block disappeared after oxaliplatin withdrawal. We detected no recurrence of the third-degree atrioventricular block in future chemotherapies. Conclusions: This is the first reported oxaliplatin-induced third-degree atrioventricular block, likely mediated by coronary artery spasm. Cancer patients with acute coronary syndrome are a unique and vulnerable population, whom physicians should carefully evaluate and monitor during anticancer treatment. Remarkably, even the most common chemotherapy drugs can cause life-threatening cardiac adverse events.

7.
Huan Jing Ke Xue ; 43(6): 2858-2866, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686755

RESUMO

Carbonaceous aerosol is an important component of atmospheric fine particles that has an important impact on air quality, human health, and climate change. In order to explore the long-term changes in carbonaceous aerosol under the background of emission reduction, this study measured the mass concentrations of organic carbon (OC) and elemental carbon (EC) of PM2.5, which collected in the northern suburbs of Nanjing for five years (December 17, 2014 to January 5, 2020). The results showed that the five-year average ρ(OC) and ρ(EC) were (10.2±5.3) µg·m-3 and (1.6±1.1) µg·m-3, accounting for 31.1% and 5.2% of PM2.5, respectively. OC and EC concentrations were both high in winter and low in summer. According to the nonparametric Mann-Kendall test and Sen's slope, the mass concentrations of OC and PM2.5 decreased significantly[OC:P<0.0001, -0.79 µg·(m3·a)-1, -0.29%·a-1; PM2.5:P<0.0001, -4.59 µg·(m3·a)-1, -1.58%·a-1]. Although EC had an upward trend, the significance and range of change were not obvious[P=0.02, 0.05 µg·(m3·a)-1, 0.02%·a-1]. OC and EC decreased significantly during winter from 2014 to 2019[OC:P<0.0001, -2.05 µg·(m3·a)-1, -0.74%·a-1; EC:P=0.001, -0.15 µg·(m3·a)-1, -0.05%·a-1], and the decline was more obvious than the whole. The correlation between OC and EC showed that the sources in winter and summer were more complex than those in spring and autumn. According to the characteristic ratio of OC and EC, the contribution of coal combustion and biomass burning decreased from 2015 to 2019, whereas the impact of industrial sources and vehicle emissions became more significant. Corresponding to this was the obvious decline in OC and the slight recovery of EC. The OC/EC ratio was over 2.0, indicating that there was secondary pollution in the study area. Further calculation revealed that the variation in SOC was consistent with that in OC, showing a significant decrease[P<0.0001, -0.47 µg·(m3·a)-1, -0.17%·a-1]. The average mass concentration of SOC was (5.0±3.5) µg·m-3, accounting for 49.2% of OC. These changes indicate clear effects of the prevention and control of air pollution in Nanjing in recent years. Furthermore, future control can focus on the emissions of VOCs to reduce secondary pollution.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise
8.
J Colloid Interface Sci ; 615: 395-407, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35150952

RESUMO

Smart artificial viruses have been successfully developed by co-assembly of de novo designed peptides with DNA, which achieved stimuli-responsibility and efficient gene transfection in cancer cells. The peptides were designed to incorporate several functional segments, including a hydrophobic aromatic segment to drive self-assembly, two or more cysteines to regulate the assemblage shape and stabilize the assembled nanostructures via forming disulfide bonds, several lysines to facilitate co-assembly with DNA and binding to cell membranes, and an enzyme-cleavable segment to introduce cancer sensitivity. The rationally designed peptides self-assembled into stable nanospheres with a uniform diameter of < 10 nm, which worked as capsid-like subunits to further interact with DNA to produce hierarchical virus-mimicking structures by encapsulating DNA in the interior. Such artificial viruses can effectively protect DNA from nuclease digestion and achieve efficient genome release by enzyme-triggered structure disassembly, which ensured a high level of gene transfection in tumor cells. The system emulates very well the structural and functional properties of natural viruses from the aspects of capsid formation, genome package and gene transfection, which is highly promising for application as efficient gene vectors.


Assuntos
Capsídeo , Nanosferas , Partículas Artificiais Semelhantes a Vírus , Capsídeo/química , DNA/química , Peptídeos/química
9.
Langmuir ; 38(4): 1621-1630, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042338

RESUMO

The zeolitic imidazolate framework-8 (ZIF-8) nanozyme has been synthesized using hydrophobic amino acid (AA) to regulate crystal growth. The as-synthesized ZIF-8 reproduces both the structural and functional properties of natural carbonic anhydrase (CA). Structurally, Zn2+/2-methylimidazole coordinated units mimic very well the active center of CA while the hydrophobic microdomains of the adsorbed AA simulate the CA hydrophobic pocket. Functionally, the nanozymes show excellent CA-like esterase activity by giving specific enzyme activity of 0.22 U mg-1 at 25 °C in the case of Val-ZIF-8. More strikingly, such nanozymes are superior to natural CA by having excellent hydrothermal stability, which can give highly enhanced esterase activity with increasing temperature. The specific enzyme activity of Val-ZIF-8 at 80 °C is about 25 times higher than that at 25 °C. In addition, AA-ZIF-8 also shows an excellent catalytic efficiency toward carbon dioxide (CO2) hydration. This study puts forward the important role of hydrophobic microdomains in biomimetic nanozymes for the first time and develops a facile and mild method for the synthesis of nanozymes with controlled morphology and size to achieve excellent catalytic efficiency.


Assuntos
Anidrases Carbônicas , Zeolitas , Aminoácidos , Dióxido de Carbono/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Zeolitas/química , Zinco
10.
J Colloid Interface Sci ; 608(Pt 3): 2779-2790, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774323

RESUMO

The MnO2@ZIF-8 core-shell nanoparticles for highly efficient dye degradation have been synthesized with a green method. ZIF-8 crystals with controlled morphology and size are first synthesized by using peptide to modulate the crystal growth. MnO2 is then coated on ZIF-8 via in situ reaction. The surface MnO2 density can be controlled by the dosage of KMnO4. The MnO2@ZIF-8 nanoparticles work as photocatalyst to degrade rhodamine B in a Fenton-like process, giving a degradation ratio of > 96.0%. The degradation kinetics comply well with the Pseudo-second-order model and the experimental equilibrium data meet the Langmuir model best. The specific hierarchical structure of MnO2@ZIF-8 assures a synergistic enhancement of the catalytic degradation performance from several aspects. First, anchoring of the MnO2 nanoparticles on ZIF-8 allows their well disperse to provide more active surface area. Second, highly porous ZIF-8 can adsorb dye molecules to accumulate them at the surface reactive sites. Third, the MnO2/ZIF-8 nano-heterojunctions enhance charge carrier transfer and accelerate the production of free oxidative radicals. The study demonstrates a green method for fabrication of hierarchical hybrid structures, paving the way for designing novel photocatalysts with potential applications for wastewater treatment.


Assuntos
Poluentes Ambientais , Nanopartículas , Corantes , Compostos de Manganês , Óxidos , Águas Residuárias
11.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067160

RESUMO

Puccinia striiformis f. sp. tritici (Pst) is an important pathogen of wheat (Triticum aestivum L.) stripe rust, and the effector protein secreted by haustoria is a very important component involved in the pathogenic process. Although the candidate effector proteins secreted by Pst haustoria have been predicted to be abundant, few have been functionally validated. Our study confirmed that chitin and flg22 could be used as elicitors of the pathogenic-associated molecular pattern-triggered immune (PTI) reaction in wheat leaves and that TaPr-1-14 could be used as a marker gene to detect the PTI reaction. In addition, the experimental results were consistent in wheat protoplasts. A rapid and efficient method for screening and identifying the effector proteins of Pst was established by using the wheat protoplast transient expression system. Thirty-nine Pst haustorial effector genes were successfully cloned and screened for expression in the protoplast. We identified three haustorial effector proteins, PSEC2, PSEC17, and PSEC45, that may inhibit the response of wheat to PTI. These proteins are localized in the somatic cytoplasm and nucleus of wheat protoplasts and are highly expressed during the infection and parasitism of wheat.


Assuntos
Proteínas Fúngicas/metabolismo , Imunidade , Moléculas com Motivos Associados a Patógenos/metabolismo , Protoplastos/microbiologia , Puccinia/fisiologia , Triticum/imunologia , Triticum/microbiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quitina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Imunidade/efeitos dos fármacos , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Protoplastos/efeitos dos fármacos , Puccinia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/genética
12.
Appl Opt ; 60(13): 3732-3739, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983305

RESUMO

In this paper, a new, to the best of our knowledge, neural network combining a new residual neural network (ResNetV2), the residual dense block (RDB), and eHoloNet is proposed to reconstruct a blurred object. With the theory of ghost imaging, only the bucket signal that passes through the blurred object is necessary for reconstruction. The training sets are ENMNIST, which is used for simulation, and the blurred object is designed by Airy convolution. To test the generalization of the neural network, we use multi-slit as the testing sets. Both simulated and experimental results show that the trained neural network is superior in a generalized reconstruction of the blurred object. In addition, the limitation of the reconstruction is also explained in this work.

13.
Chem Sci ; 11(48): 12888-12917, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34123239

RESUMO

Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.

14.
Front Plant Sci ; 11: 600788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424899

RESUMO

Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.

15.
J Colloid Interface Sci ; 536: 638-645, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30391906

RESUMO

Investigation of non-precious, highly-active and durable catalysts is an essential criteria for the development of electrocatalytic hydrogen evolution reaction (HER). In this work, reduced graphene oxide coupled with molybdenum phosphide (MoP-RGO) is prepared through a facile and scalable one-step strategy. Three strategies are developed to tune the electrocatalytic performance of MoP-RGO including optimize the pyrolysis temperature, add NaCl template and introduction of sulfur atoms. After the optimization, the overpotentials at 10 mA cm-2 reduced from 238 to 152 mV (alkaline electrolyte) and 232 to 144 mV (acid medium), respectively. This work mainly focus on exploiting various strategies to tune the electrocatalytic performance of non-precious catalysts for HER which can provide multiple avenues to develop efficient electrocatalysts.

16.
J Appl Toxicol ; 38(11): 1437-1446, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30051583

RESUMO

Cadmium is considered one of the most harmful carcinogenic heavy metals in the human body. Although many scientists have performed research on cadmium toxicity mechanism, the toxicokinetic process of cadmium toxicity remains unclear. In the present study, the kinetic response of proteome in/and A549 cells to exposure of exogenous cadmium was profiled. A549 cells were treated with cadmium sulfate (CdSO4 ) for different periods and expressions of proteins in cells were detected by two-dimensional gel electrophoresis. The kinetic expressions of proteins related to cadmium toxicity were further investigated by reverse transcription-polymerase chain reaction and western blotting. Intracellular cadmium accumulation and content fluctuation of several essential metals were observed after 0-24 hours of exposure by inductively coupled plasma mass spectrometry. Fifty-four protein spots showed significantly differential responses to CdSO4 exposure at both 4.5 and 24 hours. From these proteins, four expression patterns were concluded. Their expressions always exhibited a maximum abundance ratio after CdSO4 exposure for 24 hours. The expression of metallothionein-1 and ZIP-8, concentration of total protein, and contents of cadmium, zinc, copper, cobalt and manganese in cells also showed regular change. In synthesis, the replacement of the essential metals, the inhibition of the expression of metal storing protein and the activation of metal efflux system are involved in cadmium toxicity.


Assuntos
Cádmio/toxicidade , Proteínas de Transporte de Cátions/metabolismo , Metalotioneína/metabolismo , Proteoma/metabolismo , Células A549 , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Metalotioneína/genética , Proteoma/genética , Fatores de Tempo , Toxicocinética
17.
Anal Chem ; 89(19): 10446-10453, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28868887

RESUMO

A facile solvothermal method for the synthesis of multifunctional magnetic CuFeMnO4 nanospheres affinity probe (NSAP) with controllable morphology and size was developed for the first time. The CuFeMnO4 nanospheres combine the brilliant features of Cu2+, Fe3+, and Mn2+ ions, so their multifunction performances are embodied by strong coordination to carboxyl and amine groups of peptides (Cu2+ and Fe3+), special affinity to phosphate groups of phosphopeptides (Fe3+ and Mn2+), and high magnetic responsiveness in a magnetic field. Their potential as an affinity probe was evaluated for highly effective enrichment, rapid magnetic separation of low-abundance peptides (neutral condition), and effective selective capture of phosphopeptides (acid condition) from various complex biosamples. Notably, CuFeMnO4 NSAP was explored for highly selective capture and isolation of phosphopeptides from A549 cells after exposure to ZnO nanoparticles for different times. Consequently, we put forward a new nanospinel ferrite-based protocol here to analyze and identify the phosphoproteins/phosphopeptides involved in cellular signaling pathways in response to exogenous stimulation.


Assuntos
Compostos de Manganês/química , Nanosferas/química , Peptídeos/química , Fosfopeptídeos/química , Células A549 , Adsorção , Animais , Humanos , Magnetismo , Nanopartículas Metálicas/química , Leite/metabolismo , Peptídeos/análise , Peptídeos/sangue , Fosfopeptídeos/análise , Fosfopeptídeos/sangue , Saliva/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Óxido de Zinco/química
18.
Chem Commun (Camb) ; 53(33): 4620-4623, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28401201

RESUMO

This work presents a sequential enrichment protocol, based on two self-designed cerium-based nanocomposite affinity probes, which not only can effectively separate phosphopeptides from non-phosphopeptides but can also selectively differentiate mono- and multi-phosphopeptides for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF MS) analysis.

19.
Bioengineered ; 8(4): 383-392, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28075663

RESUMO

The objective was to study the relationship among Her-2, Ki-67, p53 expression and the clinicopathologic characteristics of breast cancer in the patients of northern China. Expression of Her-2, Ki-67, p53 and clinical characteristics of 260 breast cancer patients were retrospectively studied. Her-2 overexpression led to higher incidence rates of infiltrating ductal carcinoma and axillary lymph node metastasis, bigger diameters of the primary tumors, later pTNM staging, and a lower incidence rate of ductal carcinoma in situ (p < 0.05). High expression of ER and PR led to fewer patients classified histologically in higher grade (p = 0.001), while high expression of Ki-67 and p53 caused more patients classified histologically in higher grade (p = 0.001). In patients histologically classified in grade 1 and 2, the expression of Ki-67 and p53 was significantly (p = 0.001) higher, and the expression of ER and PR was significantly lower, in Her-2 positive patients than Her-2 negative patients. Breast cancer with Her-2 overexpression was more likely to recur and metastasize than Her-2 negative breast cancer. Higher coincidence of high expression of p53 and Ki-67 with Her-2 overexpression and more progressed tumors suggested that in addition to p53, Ki-67 might also be a prognostic biomarker of breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/metabolismo , Antígeno Ki-67/metabolismo , Receptor ErbB-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Neoplasias da Mama/diagnóstico , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Prevalência , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
20.
Shanghai Kou Qiang Yi Xue ; 25(2): 235-7, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-27329893

RESUMO

PURPOSE: To evaluate the clinical effect of Forsus appliance in the treatment of patients with Class II malocclusion after growth spurts. METHODS: Twenty-two patients with Class IImalocclusion were treated with Fursus appliance.Cephalogram pre-and post-treatment was taken,and the clinical effect was evaluated.SPASS14.0 software package was used for paired t test. RESULTS: Six to eight months after treatment, SNB increased (1.4±0.002)°,overbite and overjet decreased (5±0.000) mm and (5.5±0.000) mm, the relationship of molar reached ClassⅠ, upper incisiors were retruded (1.5±0.004)°, while low incisiors were proclined (1.3±0.005)°. Significant difference was found before and after treatment (P<0.05). CONCLUSIONS: The growth of mandible was promoted remarkably by Forsus appliance following growth spurts, the relationship of molar and profile were also improved.


Assuntos
Má Oclusão Classe II de Angle/terapia , Aparelhos Ortodônticos Funcionais , Cefalometria , Humanos , Mandíbula , Dente Molar , Sobremordida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA